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In the atmospheric surface layer, the wavelength of the peak in the vertical velocity
spectrum Λw decreases with increasing stable stratification and proximity to the
surface and this dependence constrains our ability to perform high-Reynolds-number
large-eddy simulation (LES). Near the ground, the LES filter cutoff ∆f is comparable
to or larger than Λw and as a result the subfilter-scale (SFS) fluxes in LES are
always significant and their contribution to the total flux grows with increasing
stability.

We use the three-dimensional turbulence data collected during the Horizontal
Array Turbulence Study (HATS) field program to construct SFS fluxes and variances
that are modelled in LES codes. Detailed analysis of the measured SFS motions
shows that the ratio Λw/∆f contains the essential information about stratification,
vertical distance above the surface, and filter size, and this ratio allows us to connect
measurements of SFS variables with LES applications. We find that the SFS fluxes
and variances collapse reasonably well for atmospheric conditions and filter widths in
the range Λw/∆f = [0.2, 15]. The SFS variances are anisotropic and the SFS energy
is non-inertial, exhibiting a strong dependence on the stratification, large-scale shear,
and proximity to the surface. SFS flux decomposition into modified-Leonard, cross-,
and Reynolds terms illustrates that these terms are of comparable magnitude and
scale content at large Λw/∆f . As Λw/∆f → 0, the SFS flux approaches the-ensemble-
average flux and is dominated by the Reynolds term. Backscatter of energy from the
SFS motions to the resolved fields is small in the bulk of the surface layer, less than
20% for Λw/∆f < 2.

A priori testing of typical SFS models using the HATS dataset shows that the
turbulent kinetic energy and Smagorinsky model coefficients Ck and Cs depend on
Λw/∆f and are smaller than theoretical estimates based on the assumption of a sharp
spectral cutoff filter in the inertial range. Ck and Cs approach zero for small Λw/∆f .
Much higher correlations between measured and modelled SFS fluxes are obtained
with a mixed SFS model that explicitly includes the modified-Leonard term. The
eddy-viscosity model coefficients still retain a significant dependence on Λw/∆f with
the mixed model. A dissipation model of the form ε = CεE

3/2
s /∆f is not universal

across the range of Λw/∆f typical of atmospheric LES applications. The inclusion
of a shear-stability-dependent length scale (Canuto & Cheng 1997) captures a large
fraction of the variation in the eddy-viscosity and dissipation model coefficients.
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1. Introduction
Large-eddy simulation (LES) is a powerful tool for computing three-dimensional,

time-dependent turbulent flows in geophysical and engineering sciences. However,
in order for LES to attain widespread use as a computational method for high-
Reynolds-number flows, advances on several fronts are required, e.g. general flow
solvers, grid generation for complex geometry, specification of inflow and outflow
boundary conditions, and of particular interest here, improved modelling of subfilter-
scale (SFS) motions. In well-resolved regions of a turbulent flow the SFS motions
are small and LES solutions are generally insensitive to the details of the SFS model.
However, in flows with laminar-to-turbulent transition, strong stable stratification, or
near solid boundaries, the SFS motions can become large and their impact on LES
solutions is generally poorly understood.

The present work examines the specific problem of SFS turbulence modelling in
the surface layer of the atmospheric planetary boundary layer (PBL). Surface-layer
turbulence is strongly influenced by stratification, shear, and the presence of a rough
boundary (Kaimal & Finnigan 1994). Previous studies (e.g. Mason & Thomson 1992;
Sullivan, McWilliams & Moeng 1994; Saiki, Moeng & Sullivan 2000; Khana &
Brasseur 1997; Stevens, Moeng & Sullivan 1999; and Zhou, Brasseur & Juneja 2001)
provide evidence that LES solutions of the PBL are SFS model dependent to varying
degrees, but less so for PBLs with vigorous unstable buoyancy forcing (Nieuwstadt
et al. 1993).

Most LES of the PBL adopt the following working flow model: high Reynolds
number (implying that the molecular viscosity is small and not included in the set
of governing equations), incompressible, Bousinessq equations with Monin–Obukhov
similarity theory as a lower boundary condition (Nieuwstadt et al. 1993 describe
typical LES models). We mention an important difference between LES with a
surface roughness (zo) parameterization as a lower boundary condition and LES with
a resolved viscous sublayer. In the former, the SFS model contribution must be an
increasingly large fraction of the total turbulence as the surface is approached whereas
in the latter the SFS model becomes small near the wall with the viscous effects
sufficiently large to transmit fluxes from the surface to the interior. Spalart et al.
(1997) refers to LES with a resolved viscous sublayer as quasi-direct numerical
simulation (QDNS) since the Reynolds number achievable is comparable to full
DNS. Knowledge of the SFS motions over a rough wall at high Reynolds number is
required to improve LES of geophysical flows.

In the LES system of equations with coordinates xi = (x, y, z), the total velocity
Ui = (U, V, W ) is formally decomposed into resolved and SFS components (Ui, ui)
by the application of a spatial filter G (Leonard 1974). Hence,

Ui = Ui + ui ≡
∫

Ui(x
′
j )G(xi, x

′
j ) dx ′

j + ui. (1.1)

The LES SFS fluxes (or stresses) τij are defined as

τij = UiUj − Ui Uj ≡ Lij + Cij + Rij , (1.2)

where

Lij = Ui Uj − Ui Uj , (1.3a)

Cij = Uiuj + Ujui − Uiuj − Ujui, (1.3b)

Rij = uiuj − ui uj . (1.3c)
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Here we adopt the Germano (1986) decomposition of the SFS flux into a
modified-Leonard term‡ Lij , a cross-term Cij , and a SFS Reynolds stress Rij . The
decomposition (1.2) and (1.3) is clearly not unique but is advantageous since each term
individually is Galilean invariant, independent of the type of filtering used. Alternative
definitions of τij , Lij , Cij , Rij may or may not possess this property depending on the
type of filtering applied (Speziale 1985), which then complicates the interpretation of
these terms (e.g. Horiuti 1989; Härtel & Kleiser 1997). For example, based on DNS
data Härtel & Kleiser (1997) found that conclusive results about SFS energy transfer
can only be obtained if a Galilean-invariant form of Lij , Cij , Rij is used; otherwise
these terms become filter dependent.

There are few observations of Cij and Rij but some properties of Lij , defined by
(1.3a), are worth mentioning. Lij depends only on resolved-scale velocities (hence
no modelling is needed) and it is equivalent to the Bardina or scale-similarity term
(Bardina, Ferziger & Reynolds 1983; see the review by Meneveau & Katz 2000). Also,
it is the main contributor in SFS models that employ a dynamic procedure when the
so-called ‘test’ filter equals the grid filter (e.g. Pope 2000, p. 622). No assumptions are
used to arrive at the above formula for Lij ; Bardina et al. (1983) arrive at (1.3a) by
dropping terms in the SFS cross- and Reynolds stress tensors (1.3b), (1.3c). Lij can
be expanded in a Taylor series since it is smooth on the grid scale, and the expansion
leads to a partial reconstruction of the total field (e.g. Winckelmans et al. 2001). The
first term of the Taylor series expansion of Lij is the basis of gradient or nonlinear
SFS models (Meneveau & Katz 2000), the main component of the tensor-diffusivity
model (Leonard 1997), and an important ingredient in deconvolution methods (e.g.
Stolz, Adams & Kleiser 2001; Katopodes, Street & Ferziger 2000). Since Lij (or a
close approximation of it) can be computed directly in LES, we believe it is useful to
investigate connections between Lij and the cross- and Reynolds SFS stress tensors,
with the expectation that this information might lead to improved SFS models.

The objective of the present study is to deduce the structure of the SFS fluxes τij

and their component parts (Lij , Cij , Rij ) from field observations in the atmospheric
surface layer over a wide range of stratification. In addition, we use the measured
fluxes to perform a priori testing of some typical SFS models currently adopted in
LES. Previous work on this topic is reported by Tong et al. (1998) and Porté-Agel et al.
(2001) who consider a smaller range of stratification and filter widths. Laboratory
measurements reviewed by Meneveau & Katz (2000) consider lower Reynolds number
and neutrally stratified flows with and without boundaries.

2. The field campaign
The turbulence data used here are part of the dataset collected during the Horizontal

Array Turbulence Study (HATS) field program. The primary objective of HATS is
the measurement of SFS variables in the surface layer of the atmospheric boundary
layer using the horizontal array technique proposed by Tong et al. (1998) and utilized
by Porté-Agel et al. (2001) and others. Horst et al. (2002) document HATS and
in particular describe the field site, instrumentation and data collection procedures,
assess the data quality, and evaluate the adequacy of spatial and temporal discrete
filtering as a surrogate for two-dimensional spatial filtering. They conclude that the
measurements of the three components of wind velocity and temperature are sufficient

‡ We refer to Lij in (1.3a) as a modified-Leonard term since it is similar in character but different

from the traditional definition Lij = Ui Uj − Ui Uj .
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Figure 1. Sketch of the sonic deployment and the (x, y, z) coordinate system used for analysis.
The sonic anemometers ⊗ in the double and single arrays are located at (zd, zs) above the
surface, the lateral separation between individual sonic anemometers is (δyd , δys).

Configuration zd δyd zs δys Curve

1 3.45 3.35 6.90 6.70 �
2 4.33 2.17 8.66 4.33 �
3a 8.66 2.17 4.33 1.08 +×
3b 8.66 2.17 4.33 1.08 �
4 4.15 0.50 5.15 0.62 �

Table 1. Vertical location and lateral spacing of the sonic anemometers (in m).

to accurately resolve the SFS variables and spatial (x, y, z) gradients; see Horst et al.
(2002) for further details.

In the horizontal array technique, two arrays (or lines) of sonic anemometers are
positioned perpendicular to the primary wind direction and the horizontal spacing
between individual sonic anemometers is selected to achieve different spatial filter
widths (see figure 1). The two sonic arrays are located at different heights above
the surface to allow for measurement of vertical gradients. Under the assumption of
Taylor’s hypothesis in the alongwind direction, we are in essence able to measure a
two-dimensional (x, y)-plane of turbulence at two levels in the atmospheric surface
layer. One of the novel features of the Tong et al. (1998) sonic deployment is the
use of a dense array of sonic anemometers to allow ‘double’ spatial filtering as
required in (1.3). The ability to double-filter SFS variables allows us to isolate the
modified-Leonard, cross- and Reynolds stress components of the SFS flux tensor (1.3).

Four different horizontal array configurations, referred to as Configuration-(1, 2,

3a, 4), are employed in HATS. Each configuration consists of a double array (or d-
array) containing nine sonic anemometers and a single array (or s-array) containing
five sonic anemometers. The heights (zd, zs) of the d- and s-arrays and lateral
separation (δyd, δys) between sonic anemometers are provided in table 1. Notice
that the height of the s-array is twice that of the d-array in Configuration-(1, 2),
with the relative positions of the d-array and s-array reversed in Configuration-3a.
(In § 3 we also introduce Configuration-3b which is like Configuration-3a but with a
different filter width in the d-array.) Configuration-4 is a closely packed configuration
of sonic anemometers similar to that used by Porté-Agel et al. (2001). From these
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four horizontal configurations, we can construct a wide range of filter widths (see
figure 2). In the following analysis the vertical positions (zd, zs) are corrected for the
wind profile displacement height, do = 0.32 m (Horst et al. 2002).

From the four-week database archived during HATS, a smaller subset of 35
periods (or cases) are selected for detailed analysis. All cases are at least 25 minutes
in duration, are reasonably stationary in terms of wind direction and surface fluxes,
and are non-overlapping (i.e. each case represents an independent period). For each
configuration, the cases selected span a range of atmospheric stability varying from
unstable to stable.

3. Analysis procedures
Resolved velocity components and temperature are generated from the measured

variables in a two-stage process. First, the instantaneous horizontal (total) velocity
components are transfered to new coordinates parallel and perpendicular to the
mean wind direction (i.e. into alongwind and crosswind coordinates). This coordinate
rotation permits us to utilize Taylor’s hypothesis to convert the time-varying data at
each sonic into alongwind spatial fluctuations. Next, the rotated horizontal velocity
components, the vertical velocity, and temperature are interpolated to the Cartesian
grid defined by alongwind and crosswind directions† (see Horst et al. 2002 for
additional details). We utilize trigonometric (spectral) interpolation (e.g. Lanczos
1956, p. 229) in time (or equivalently in space in the alongwind direction) for this
step. Spectral interpolation was found to be superior to linear interpolation, which
slightly damped the high-frequency fluctuations. The average friction velocity, heat
flux, and vertical velocity spectrum computed from the rotated spectrally interpolated
fields are identical to their counterparts generated from the original time series.

Resolved fields are created from the rotated interpolated total fields by applying
a combination of top-hat filtering in the y-direction and Gaussian filtering in the
x-direction. A top-hat filter of width ∆y is generated from a weighted sum of five
crosswind measurements. In the alongwind direction, we choose the number of data
points based on mean wind speed and sample rate so that the width of the Gaussian
filter ∆x = ∆y . Then the second moments of the top-hat and Gaussian filters are
equal and the transfer functions of these two filters are closely matched (Horst et al.
2002). The two-dimensional filter width ∆f = ∆x = ∆y . Given our five-point top-
hat filter, single-filtered (resolved) data can be generated at the middle five sonic
anemometers of the d-array and at the centre sonic of the s-array (see figure 1). Time
series of double-filtered data at the centre sonic of the d-array are created as needed
by applying the same top-hat and Gaussian operators to single-filtered fields. The
filtering software satisfies UiUj − Ui Uj = Lij + Cij + Rij instantaneously as required
by (1.2).

In order to expand the number of available cases, we use two different width filters
for the d-array of Configuration-3a. We employ a three-point top-hat filter selected to
match the filter width of the s-array (we refer to this as Configuration-3a) and a wider
five-point top-hat filter (Configuration-3b) constructed in the same manner as for
Configurations-(1, 2, 4). Configuration-3a is well-suited for taking vertical derivatives
of resolved fields since the filter widths in the s- and d-arrays are matched. On the
other hand results from the d-array of Configuration-3b can be cleanly compared to

† Note that in the alongwind–crosswind grid the lateral spacing between measurement points is
reduced, compared to the original sonic spacing, by the cosine of the mean wind angle.
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those from Configurations-(1, 2, 4) since their filter transfer functions are identical. The
difference in filter widths between the s- and d-arrays of Configuration-3b, however,
lowers the accuracy of vertical derivatives.

Another aspect of the horizontal array technique is the computation of spatial
gradients of resolved fields, which are required for computations of energy transfer
between resolved and SFS motions (see § 5.4) and for evaluation of SFS models that
utilize an eddy-viscosity prescription (see § 6). In the x- and y-directions fourth-order-
accurate formulas are utilized while vertical gradients are first-order formulas based
on the difference between measurements at the d-array and s-array heights (see Horst
et al. 2002).

To quantify the statistics of total, resolved, and SFS variables, we define the
temporal mean and fluctuation as

α = 〈α〉 + α′ =
1

T

∫ T

0

α(s) ds + α′, (3.1)

where 〈α〉 denotes the mean (or average) of the random variable α and α′ is the
deviation from the mean over the sample period T . The sample period is long
(T � 25 min) compared to the time scale of the filter, ∆f /〈U〉, so that 〈Ui〉 = 〈Ui〉,
u′

i = ui , and the decomposition of the total velocity into resolved and SFS components
essentially becomes

Ui = 〈Ui〉 + U ′
i = 〈Ui〉 + Ui

′
+ ui. (3.2)

It is important to mention that while 〈ui〉 = 0, in general averages of higher-order
moments involving ui in the SFS flux tensor are non-zero, e.g. 〈uiuj 〉 �= 0 in the SFS
Reynolds term (1.3c).

4. Resolved and SFS surface layer turbulence
4.1. Length scale

The contribution of the resolved and SFS motions to the total turbulence is deter-
mined by the position of the filter cutoff wavelength ∆f in the spectral distribution
of turbulence energy. If the most energetic turbulent eddies are identified by
the wavelength Λ of the spectral peak, then for cutoff and peak wavenumbers
(kf , kp) = 2π(1/∆f , 1/Λ), the contribution of the SFS motions to the total turbulence
is dominant when kf � kp while the resolved motions are of increasing importance for
kf 	 kp . In the present investigation, kf is set by the geometry of the experimental
design (i.e. by our choice of sonic separation and filter shape) whereas kp varies
widely with the atmospheric conditions. Thus, the balance between SFS and resolved
motions hinges on the sonic spacing and the state of the atmosphere. The existing body
of observational evidence in the atmospheric surface layer shows that the spectral
peak of the turbulent velocity and temperature fields (and their vertical flux) largely
depends on the height above the surface and the atmospheric stability, as quantified by
Monin–Obukhov similarity theory. A summary of surface-layer turbulence structure
is given by Kaimal & Finnigan (1994). The peak wavelength of the vertical velocity,
Λw , in particular varies systematically with height z and atmospheric stability as
measured by the Monin–Obukhov length L, z/Λw = H(z/L). On the other hand, the
horizontal velocity components do not scale as well with Monin–Obukhov similarity
because they contain large-scale motions that vary with zi , the height of the PBL
(e.g. Khana & Brasseur 1997; Johansson et al. 2001). In view of the importance
of the vertical velocity field in the surface layer, and because w is least resolved
in high-Reynolds-number LES (Peltier et al. 1996; Sullivan, McWilliams & Moeng
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Figure 2. The (Λw,∆f ) parameter space for the observational campaign. Λw is the wavelength
of the peak energy in the vertical velocity and ∆f is the filter width. The particular
configurations of sonic anemometers (see table 1) are denoted by the symbols (�, �,+×, �,�)
and are used in all following figures.

1996), we adopt the peak wavelength of the vertical velocity field Λw as the relevant
surface-layer turbulence length scale in the subsequent analysis. Other choices for
a length scale may also be useful in the analysis of SFS turbulence. For example,
Meneveau & Lund (1997) use the Kolmogorov microscale η = (ν3/ε)1/4 (ν is the
molecular viscosity and ε the viscous dissipation rate) because their filter cutoff scale
is near the viscous dissipation scale. Porté-Agel et al. (2001) use the height z above the
surface in their analysis of SFS heat flux for a limited range of atmospheric stability,
−0.35 < z/L < −0.15.

We utilize two assumptions to obtain estimates of Λw: Taylor’s hypothesis and
an analytic form for the one-dimensional w-spectrum based on the exponential
autocorrelation function R(t) = exp(−t/τp) (Kaimal & Finnigan 1994, p. 63). Under
these assumptions, Λw = 2π〈U〉τp where 〈U〉 is the mean velocity in the alongwind
direction and τp is the Eulerian integral time scale. In practice, we compute the
autocorrelation function of the vertical velocity and linearly interpolate in time to
find the location that yields R(τp = t) = e−1. The results are well behaved and
avoid ambiguities associated with finding a peak by a fitting procedure applied to
the spectrum. The exponential autocorrelation function implies a large-wavenumber
spectrum ∼ k−2, but we find only small differences (10%–15%) in Λw for analytic
functions that predict a large-wavenumber spectrum ∼ k−5/3 (Horst et al. 2002).

The (Λw, ∆f ) parameter space for the field campaign is illustrated in figure 2. ∆f

changes by more than a factor of 5 for narrow and wide sonic spacings, while varying
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Figure 3. Variation of the wavelength of the vertical velocity spectral peak Λw with atmos-
pheric stability z/L. Results for both d- and s-arrays are included. The solid line is a curve fit
to the data given by (4.5).

atmospheric conditions and sonic height cause Λw to change by a factor of 10 or
more. The slight changes in ∆f for a given array of sonic anemometers are induced
by variations in the horizontal wind direction (i.e. the mean wind is not always
perpendicular to the line of sonic anemometers). Cases with mean winds mis-aligned
(relative to the line of sonic anemometers) always lead to smaller filter widths (see § 3).
The dependence on vertical height is also observed in figure 2 where Λw is largest for
Configuration-(3a,3b), i.e. the sonic configuration located at the greatest height. Note
that the filter widths of Configuration-(3a,3b) are different as discussed in § 3. The
ratio Λw/∆f (which we refer to as the energy-filter ratio) spans the interval [0.2, 15]
(a factor of about 75) and thus the balance between SFS and resolved motions also
varies widely (see § 5). The SFS motions are dominated by large turbulent eddies,
relative to the filter scale, when Λw/∆f < 1 and by small-scale turbulent eddies when
Λw/∆f 	 1.

Figure 3 shows the variation of z/Λw with stability for the cases considered, along
with a curve fit to the data (see § 4.2). As no aspects of filtering are involved in
computing Λw , we show the average of all measurements at a fixed height. Thus, for
a particular horizontal array configuration we obtain two estimates: an average of 9
sonic anemometers in the d-array and 5 sonic anemometers in the s-array. The results
collapse well to a single curve for the wide range of stabilities and vertical locations
considered. For a fixed z, the spectral peak of the vertical velocity dramatically
shifts towards higher wavenumbers with increasing stability, and thus z/Λw changes
by more than a factor of 10 for the range −1 < z/L < 1. Our measurements are
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generally consistent with results previously reported by Kaimal et al. (1972, 1976,
1982) and Panofsky & Dutton (1984) for the atmospheric surface layer over a rough
surface with no large-scale inhomogeneity. The impact of the Λw dependence on
stability for LES is discussed below.

4.2. Surface-layer LES

Past experience suggests that surface-layer turbulence is poorly resolved in LES, more
so with increasing atmospheric stability. To quantify this perception we need to relate
measurements of SFS quantities to LES, and in particular determine the values of
Λw/∆f for typical LES grid spacings and shear–buoyancy forcing. Surprisingly, the
LES filter width is not well defined in most implementations and a clean comparison
between ∆f -LES and ∆f -observations cannot be made. The SFS model for typical
LES is posed in terms of resolved (filtered) fields and explicit spatial filtering is
not formally required to solve the system of equations, i.e. only Ui appears in the
momentum equations of an LES. Spatial filtering is performed implicitly with the
SFS model and the differencing scheme. For instance, the Smagorinsky SFS model
imposes a filter similar in shape to a Gaussian filter at high wavenumbers (Pope
2000, p. 590; see also Mason & Callen 1986; Mason & Brown 1999). Furthermore,
finite-difference and finite-volume codes employ low-order difference operators on
anisotropic grids, and as a result the SFS model physics is mixed with the numerical
errors (Ghosal & Moin 1995; Scotti, Meneveau & Fatica 1997). Boundary layers pose
an added complication since the presence of a solid wall invalidates the assumption of
spatially homogeneous filtering and then the filter width is dependent on the distance
from the boundary. Explicit spatial filtering, which is computationally expensive, is
employed with pseudospectral LES codes (e.g. Rogallo & Moin 1984; Bardina et al.
1983; Moeng & Wyngaard 1988) to control aliasing errors and also with LES
models that employ SFS models based on multiple filterings of the resolved field
(e.g. Winckelmans et al. 2001). The latter LES implementations utilize a more precise
definition of filter width.

To illustrate the connection between observations and LES and to establish a basis
for the interpretation of our measurements, we adopt the definition of filter width in
our mixed finite-difference pseudospectral code (Moeng & Wyngaard 1988; Sullivan
et al. 1996). In this code, the LES filter width is based on the cell volume

∆3
f,les = c2

1 δx δy δz, (4.1)

where (δx, δy, δz) are grid spacings and the constant c1 = 3/2. Computed fields are
explicitly filtered in the x- and y-directions at the filter cutoff scales (∆x, ∆y) =
c1(δx, δy). A similar definition of ∆f,les was first proposed by Deardorff (1970) and
is employed in finite-difference LES codes that utilize explicit filtering on anisotropic
grids (e.g. Katopodes et al. 2000). In the absence of boundaries, the use of the
cell volume to define the filter width is formally justified by Scotti, Meneveau &
Lilly (1993). For simplicity, we set δy = δx (which is frequently used) and then the
expression for the LES filter width (4.1) becomes

∆f,les = δz(Rcc1)
2/3, (4.2)

which depends on only two parameters: δz, and the mesh aspect ratio Rc = δx/δz.
The variation of the spectral peak of the vertical velocity with atmospheric stability
is reasonably well established from the observational results given in figure 3. Hence,
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Figure 4. Ratio of the peak vertical velocity scale Λw to the LES filter width ∆f,les for the
atmospheric surface layer. For a particular height above the surface z/δz the family of curves
shows the variation with the mesh aspect ratio Rc = δx/δz.

we assume the functional form

Λw = z/H(z/L), (4.3)

which combined with (4.2) leads to

Λw

∆f,les

=
z

δz

(Rcc1)
−2/3

H(z/L)
. (4.4)

The variation of Λw/∆f,les given by (4.4) is shown in figure 4 with H(z/L)
determined from a least-squares curve fit to the data in figure 3. The functional
form is

H(z/L) =

{
0.17, z/L � −0.2

0.38 + z/L(1.04 − 0.2z/L), −0.2 < z/L < 2.
(4.5)

In figure 4, z/δz = 10 corresponds to the upper boundary of the surface layer
zsl ≈ 0.1zi for a simulation with Nz = 200 equally spaced vertical nodes with half of
the nodes located between the surface and the top of the mixed layer (zi = Nzδz/2).
Note that coarser (finer) vertical resolution pushes the top of the surface layer towards
smaller (larger) values of z/δz. Mesh aspect ratios Rc = (2.5, 5.0) are representative
of LES; a value of 2.5 is often used in our simulations of the atmospheric
PBL (e.g. Moeng & Wyngaard 1988; Moeng & Sullivan 1994; Dubrulle et al.
2002).
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The energy-filter ratio Λw/∆f,les is observed to be a strongly decreasing function
with increasing stability (z/L) in the surface layer. This is a direct consequence of the
behaviour of the wavelength of the spectral peak (Λw) in figure 3. For all combinations
of z/δz and mesh aspect ratios considered, Λw/∆f,les (or kf /kp) attains its maximum
value under unstable conditions z/L < −0.2. At the first grid point above the surface
z/δz = 1 and Rc = 2.5, the ratio Λw/∆f,les reaches a maximum of about 2.5 for
unstable conditions, falls to 1.0 for neutral conditions, and is less than 0.5 for a
stability of z/L = 0.5. Note that increased vertical grid resolution drives z/L → 0
(neutral) but does not alter the variation in figure 4. If δz is reduced, accompanied
by consistent changes in δx, then the same variation occurs but closer to the wall.
At neutral stability H(0) is independent of z and at the first grid point (4.4) reduces
to a constant. In other words, both Λw and ∆f,les ∼ z (see also Juneja & Brasseur
1999). The energy-filter ratio of interest for LES in the surface layer, encompassing a
wide spectrum of buoyancy–shear forcing, ranges from about 0.1 < Λw/∆f,les < 20
and for the majority of atmospheric conditions, the vertical velocity spectrum at kf

is not proportional to k
−5/3
f as expected in the inertial subrange.

In the following analysis, results are presented as functions of the energy filter ratio
Λw/∆f since it contains the essential information about stratification, height, and
filter width. Thus, all measured SFS statistics collapse reasonably well in terms of
this parameter. Furthermore, the ratio Λw/∆f allows us to connect measurements of
SFS variables with LES applications.

4.3. Energy distribution

Much of the analysis and interpretation of the SFS motions (described in § 5) is closely
linked to the total turbulent kinetic energy (TKE) and its partitioning amongst the
velocity components. In figure 5, the energy distribution in the (u, v, w) components
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with varying atmospheric stability (z/L) is displayed. The average velocity variance
of the total turbulence is

σ 2
i = 〈[Ui − 〈Ui〉]2〉, (4.6)

and thus the average TKE, ET = (σ 2
u + σ 2

v + σ 2
w)/2. As expected in the surface layer,

the u- and v-variances are dominant, with their sum accounting for approximately
80% to 85% of the total energy. Closer inspection of the data hints that σ 2

u > σ 2
v ,

especially near neutral stability, a likely consequence of production by mean wind
shear ∂〈U〉/∂z. The proximity of the surface inhibits vertical motions and as a result
the w-variance is about a factor of 2 to 3 smaller than the horizontal variances. This
partitioning of normalized energy amongst the velocity components is nearly uniform
across the range of stabilities considered.

5. Attributes of observed SFS motions
5.1. Energy, variances, and vertical momentum

The contribution of the SFS motions to the total turbulence energy, variances, and
vertical momentum flux is depicted in figure 6 for varying energy-filter ratio Λw/∆f .
Here the SFS energy Es = τii/2, variances, and momentum flux are generated from
the (instantaneous) total and resolved velocity fields (Ui, Ui) using (1.2). Because
(1.2) is a flux conservation rule, i.e. total flux equals resolved plus SFS fluxes, we
can also infer the resolved contributions from figure 6. For example, the normalized
resolved u-variance is 1 − 〈τ11〉/σ 2

u . Figure 6 clearly illustrates the following. First,
the shifting balance between resolved and SFS energy and variances depends on
the location of the filter scale relative to the spectral peak of the turbulence. At
Λw/∆f = 1, for example, the balance between resolved and SFS energy is ≈50%
while the SFS contribution decreases to ≈15% for Λw/∆f � 10. Second, the results
collapse reasonably well in terms of the ratio Λw/∆f over a wide range of stabilities
and filter widths as evidenced by the overlap for the different array configurations. The
collapse of the SFS w-variance for different filter widths and atmospheric conditions
is especially good, and provides further evidence that Λw closely tracks the scale of
the energy-containing eddies in the vertical velocity spectrum. SFS (u, v)-variances
exhibit more scatter, especially for small values of Λw/∆f with stable conditions. In
this situation, ui ≈ Ui and the horizontal SFS motions contain larger-scale meandering
eddies which are not described by surface-layer scaling (e.g. Kaimal & Finnigan 1994;
Khana & Brasseur 1997). Notice that for any particular value of energy-filter ratio
〈τ33〉/σ 2

w > 〈τ11〉/σ 2
u and 〈τ22〉/σ 2

v . This is a consequence of the spectral distribution of
the total velocity fields, where w is shifted to higher wavenumbers compared to (u, v).
This same spectral distribution holds for the SFS velocities and thus the normalized
SFS vertical velocity variance is largest.

The SFS vertical momentum flux 〈τ13〉 (see figure 6) is of prime concern in LES
as it is a pathway for momentum exchange between the surface layer and the mixed
layer in the PBL. The variation of 〈τ13〉 is comparable to the SFS w-variance and
its contribution to the total vertical momentum flux is significant – at least 50% for
Λw/∆f � 2. Our measurements of SFS energy, variances, and fluxes support our
proposal to use Λw/∆f as a scaling parameter and emphasize the dependence of the
SFS motions on both z and L in the surface layer. Plotting the SFS energy, variances,
and fluxes as a function of the ratio z/∆f would introduce large scatter for any
particular array configuration and a typical diurnal range of stability.
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motions for varying energy-filter ratio Λw/∆f . 〈Es〉, 〈τii〉, 〈τ13〉 are normalized by their respec-
tive total counterparts.

5.2. Anisotropy

Classical SFS models for LES that utilize a Smagorinsky or TKE formulation (see
§ 6), assume a Kolmogorov inertial-range spectrum and isotropy at the filter scale.
The validity of the latter assumption for SFS motions in a stratified surface layer
is, however, unknown. A test of isotropy for SFS variables is presented in figure 7
where we show the measures 3〈τ11, τ22, τ33〉/2〈Es〉 with varying energy-filter ratio.
These ratios are unity for strict adherence to isotropy. The isotropy measures for the
(τ11, τ22, τ33) components are (> 1, ≈ 1, < 1), respectively, and exhibit small scatter for
all Λw/∆f . The τ11 and τ33 components are anisotropic because of a prevailing mean
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variances are isotropic when 3τii/2Es = 1.

wind and the proximity of the surface. These results indicate that the SFS variances
approach isotropy only for quite large values of the energy-filter ratio, Λw/∆f > 10.

Properties of the total deviatoric Reynolds-stress tensor are used in second-order
closure modelling (Pope 2000) and also in conjunction with DNS databases of channel
flow (e.g. Antonia & Kim 1994) to quantify turbulence anisotropy. We adopt a similar
measure and assess the anisotropy of the SFS fluxes in the atmospheric surface layer
by investigating the properties of the normalized anisotropic SFS tensor

bij =
〈τij 〉
〈τkk〉 − 1

3
δij , (5.1)

where δij is the Kronecker delta and again 〈 〉 denotes a temporal average. In a
realizable turbulent flow bij is a real symmetric matrix with three real eigenvalues
λi that define principal axes (i.e. in principal axes bij has only diagonal elements).
(Principal axes decomposition has been used extensively to examine the orientation
of stress and strain in turbulent flows (e.g. Tao, Katz & Meneveau 2000).) Three
matrix invariants can be constructed from linear combinations of λi and these
invariants uniquely describe the anisotropy of the SFS stress, instead of the original
six components of bij . Since bij is deviatoric, i.e. traceless with λ1 + λ2 + λ2 = 0, only
two of the invariants are unique and are sufficient to fully describe bij . We follow
Pope (2000, p. 393) and define the invariants (ξ, η) of the SFS anisotropy tensor as

6ξ 3 = 3(λ1λ2λ3), (5.2a)

6η2 = −2(λ1λ2 + λ2λ3 + λ1λ3). (5.2b)
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The invariants (ξ, η), computed from the eigenvalues of the measured SFS stress, are
presented in figure 8 for varying Λw/∆f . In a turbulent flow all combinations of the
invariants (ξ, η) must fall within the boundaries of the Lumley triangle (Lumley 1978,
see also Pope 2000). These boundaries, denoted by solid lines in figure 8, correspond
to special states of the turbulent flow as labelled in the figure. Our measurements
indicate that the preferred (average) state of the deviatoric SFS flux tensor is closest
to axisymmetric, but with a strong dependence on the atmospheric conditions and
filter width. The lower range of the data points (smaller ξ, η values) tends towards
isotropy and closely follows the variation of the energy-filter ratio; the lower range
corresponds to unstable atmospheric conditions with a filter cutoff wavenumber far
to the right of the spectral peak (Λw/∆f 	 1) and hence to SFS fluxes nearest the
isotropic state. This agrees with the earlier observations of the SFS variances (see
figure 7).

In the right half of the Lumley triangle, the shape of the SFS tensor is classified
as a prolate spheroid (Pope 2000, p. 394), i.e. the SFS tensor is a ‘cigar’ shape.
Average values of the Reynolds-stress tensor, obtained from DNS of neutral low-Re
channel flows, also exhibit a similar bias towards axisymmetric (ξ > 0) turbulence
especially in the near wall region but outside the viscous sublayer (see Pope 2000,
figure 11.1). One of our measurements, however, clearly falls in the regime indicative
of a ‘pancake’ shaped SFS flux tensor. In this particular case, the atmosphere is
strongly stable (z/L = 1.7) and approximately 40% of the turbulent energy is SFS;
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Λw/∆f = 1.7. Pancake shaped eddies are frequently associated with stably stratified
flows; the presence of stable vertical stratification inhibits vertical motions, resulting
in anisotropic turbulence (e.g. Kimura & Herring 1996; Riley & LeLong 2000). Our
isotropy analysis of the SFS motions also supports the traditional view of turbulence
that the large-scale turbulent eddies contain most of the anisotropy. Recall that as
Λw/∆f decreases, the SFS motions are increasingly dominated by large scales.

The degree of anisotropy in the SFS tensor and energy components has important
implications for LES. Our results suggest that the turbulence fields must be very
well resolved in the surface layer to satisfy the isotropy assumption under which the
majority of SFS models are built (i.e. Λw/∆f > 10). In this regard, it is important to
mention that the two-dimensional filtering used here is isotropic; the x and y filter
widths are matched. Thus the filtering does not bias the SFS turbulence towards an
anisotropic state; Kaltenbach (1997) notes that anisotropic filters can provide false
information about isotropy in LES calculations.

5.3. Modified-Leonard, cross-, and Reynolds terms

Further decomposition of the SFS tensor into modified-Leonard, cross-, and Reynolds
terms is desirable to gain insight into the interconnections between resolved and
SFS motions and also to provide guidance for specific SFS modelling assumptions.
The choice of filter and SFS decomposition, however, add to the confusion about
the properties of these three tensors. As noted earlier, we adopt the Germano
decomposition of the SFS tensor (see equations (1.2) and (1.3)) primarily based
on its Galilean invariant properties, which hold irrespective of the filter type. Hence,
the relative contribution of Lij , Cij and Rij to the particular SFS flux of interest can
be assessed without contamination by the mean flow. Compared to τij , computation
of Lij , Cij or Rij is more complex requiring double filtering of the velocity fields. (An

example is L11 = U U − U U .) We apply the filtering operations as described in § 3
to estimate the various components of the Lij , Cij , and Rij flux tensors according to
their definitions (1.3).

The decomposition of the SFS normal stresses and uw-vertical flux component
(displayed in figure 6) into modified-Leonard, cross-, and Reynolds terms is shown in
figures 9, 10, 11 and 12, respectively; no results are presented for the smaller τ12 and
τ23 components. First, the mean values of all tensor components vary smoothly with
the energy-filter ratio and are of comparable magnitude. This contrasts with Galilean
variant definitions of Lij and Cij that lead to large Leonard terms and cross-terms of
nearly opposite sign (e.g. Horiuti 1989; Härtel & Kleiser 1997). The SFS Reynolds
term is dominant at small Λw/∆f , where it can account for more than 90% of the
SFS tensor, whereas at large Λw/∆f the partitioning amongst the modified-Leonard,
cross-, and Reynolds normal stresses is about (25, 20, 55)%, respectively. The variation
at Λw/∆f � 1 tends to an asymptote. For very large filter widths the turbulent fluxes
must be entirely SFS, τij → Rij and Rij tends to the ensemble-average Reynolds
stress.

In the range Λw/∆f greater than about 2, the resolved motions are of increasing
importance compared to their SFS counterparts as the filter cutoff wavenumber
begins to encroach into the inertial range of the turbulence. The observations show
that the diagonal components Lii and Cii each contribute about 20% to 25% to
the SFS variances (i.e. Rii decreases to about 50%–60% of the SFS variance) when
Λw/∆f > 2. Because the spectral peak of w is shifted to higher wavenumbers
compared to u and v, the normalized R33 is larger than the normalized (R11, R22).
This is most apparent at small Λw/∆f . Meanwhile a different balance is observed in
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Figure 9. Decomposition of τ11 flux into modified-Leonard, cross-, and Reynolds terms for
varying atmospheric stability and filter width.

the SFS vertical momentum. Although R13 is dominant at small Λw/∆f , L13 > R13

and C13 ≈ R13 for energy-filter ratios >3; proportionally (L13, C13) can be as much
as (50, 30)% of the vertical momentum flux. Tong, Wyngaard & Brasseur (1999)
also reported that cross-terms were large for the SFS vertical momentum flux. A
rigorous comparison with Tong et al. (1999), however, is difficult since they used a
combination of spectral and top-hat filtering (presumably no Leonard term) and a
different definition of the SFS tensor.

The large contribution of the modified-Leonard term to the total SFS tensor is
noteworthy. For filter functions that are positive in physical space (e.g. top-hat and
Gaussian filters), Lij is a critical term as it contributes to the SFS flux and energy
transfer (see § 5.4) and potentially provides clues for SFS models (see § 6.2). In physical
space, Lij contains information about nonlinear interactions between resolved scales,
some of which cascade energy to smaller scales slightly above and below the filter
cutoff scale. The scale content of fluctuating Lij is comparable to the other SFS stress
components over a wide range of Λw/∆f as illustrated in figure 13 for the (1, 3)-
component. At small Λw/∆f (=0.58; figure 13a), the Lij fluctuations are about one
order of magnitude smaller than the cross-term and two orders of magnitude smaller
than the Reynolds term. As the filter cutoff moves towards higher wavenumbers
(Λw/∆f = 11.4; figure 13b), this partitioning shifts such that the fluctuations in Lij

are of comparable magnitude to Cij and Rij at all wavenumbers. This behaviour of
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Figure 10. Decomposition of τ22 flux into modified-Leonard, cross-, and Reynolds terms.

Lij helps explain the good performance of mixed SFS models as Λw/∆f varies from
values less than unity to values greater than unity (see § 6.2).

5.4. Energy transfer

Energy exchange between large- and small-scale motions is a critical process in
turbulent flows and plays an important role in the development and analysis of
SFS models. For example, in the inertial range of turbulence the assumption that
production of small-scale turbulence is approximately equal to dissipation leads to
the classical Smagorinsky and TKE models and provides a theoretical basis for
computing model coefficients (e.g. Lilly 1967; Moeng & Wyngaard 1988). Although
the net energy exchange is such that small scales act dissipatively on large scales, the
instantaneous flow of energy between small and large scales can be of either sign, i.e.
from large to small scales (forwardscatter) or from small to large scales (backscatter).
DNS databases have been used extensively to investigate the directional exchange of
energy (e.g. Piomelli et al. 1991; Piomelli, Yu & Adrian 1996), and theoretical models
have been proposed for incorporating the backscatter process in the equations for the
resolved scales (e.g. Leith 1990; Mason & Thomson 1992; Schumann 1995). Mason
& Thomson (1992) include a stochastic backscatter model in their atmospheric LES
and maintain that the inclusion of backscatter is an important correction to LES
modelling of surface layer turbulence in neutral conditions.
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Figure 11. Decomposition of τ33 flux into modified-Leonard, cross-, and Reynolds terms.

The present dataset provides an opportunity to investigate the energy exchange
between resolved and SFS motions at high Reynolds number and assess the
importance of backscatter. Production of SFS energy by the resolved scales is

P = −τijSij , (5.3)

where the resolved-scale strain rate tensor is

Sij =
1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
. (5.4)

With our sign convention, positive (negative) production of SFS energy P is
forwardscatter (backscatter). The forwardscatter and backscatter components of the
SFS energy production (Piomelli et al. 1991)

Pf = 1
2
(P + |P|), Pb = 1

2
(P − |P|), (5.5)

are computed using the measured SFS fluxes and resolved velocity gradients as
outlined in § 3.

Temporal averages of normalized forwardscatter and backscatter 〈Pf 〉, 〈Pb〉/
〈−τijSij 〉 are shown versus the ratio Λw/∆f in figure 14 (note that the sum of
the normalized quantities equals unity). The most striking feature of figure 14
is that for values of the energy-filter ratio Λw/∆f < 2 the average backscatter is
less than 20% and reaches a maximum of 50% at Λw/∆f ≈ 10. Also, we find
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Figure 12. Decomposition of τ13 flux into modified-Leonard, cross-, and Reynolds terms.

that the distribution of forwardscatter and backscatter events is similar to the
partitioning of the energy, i.e. at Λw/∆f = 2 forwardscatter and backscatter occur
roughly (80, 20)% of the time, respectively; the frequency of forwardscatter and
backscatter is (65, 35)% at Λw/∆f = 10. Figures 15 and 16 show the distribution
of (normalized) forwardscatter and backscatter energy transfer amongst the three
components (−LijSij , −CijSij , −RijSij ). At small Λw/∆f , the energy transfer is entirely
due to the SFS Reynolds term and is almost all forwardscatter. All three terms
contribute equally to the forwardscatter at large energy-filter ratios, each reaching
an asymptotic limit between 0.5 and 0.6. Meanwhile, the backscatter at Λw/∆f = 10
is equally distributed between the three SFS terms, each approaching −0.2. The
contribution of the cross-term to the backscatter is perhaps slightly larger than the
modified-Leonard and Reynolds terms at small Λw/∆f . Based on these results, we con-
clude that the SFS motions do indeed induce backscatter of energy in the surface
layer, but the magnitude of the process appears to be strongly scale dependent and
hence its importance to SFS modelling depends on the resolution of LES. At the
first few gridpoints above the surface, LES is in the range Λw/∆f � 2 and thus
backscatter influences from the SFS motions are small. Backscatter of SFS energy is
most important for well-resolved turbulence in the inertial range.

We note that our results are obtained using a mixed top-hat–Gaussian filter.
Piomelli et al. (1991) found that the levels of plane-averaged (x, y) forwardscatter
and backscatter in a DNS of channel flow are higher for sharp spectral filters when
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the ratio of SFS energy to total TKE is less than 5%, i.e. in our interpretation when
Λw/∆f 	 1. For smaller cutoff wavenumbers (i.e. ratios of SFS energy to total TKE
equal to 20%) their results are similar to those shown here.

6. A priori testing of SFS models
Low-Reynolds-number DNS data are traditionally used for SFS model evaluations

since they contain the necessary three-dimensional spatial information to generate SFS
fluxes and resolved field gradients. The ability to acquire multi-dimensional turbulence
data in laboratory and field studies has, however, improved sufficiently that a priori
testing can also now be performed with high-Reynolds-number measurements. There
are many suggested SFS closures for LES and the testing of all such schemes is
well beyond our scope. Here the HATS dataset is used to evaluate aspects of SFS
models typical of those implemented in working LES of the PBL, many of which
are eddy-viscosity-based parameterizations (e.g. Nieuwstadt et al. 1993; Sullivan et al.
1994). Alternative proposals for SFS models not based on an eddy-viscosity approach
(e.g. Dubrulle et al. 2002; Zhou et al. 2001; Katopodes et al. 2000; Leonard 1997;
and others) might also be evaluated with the HATS observations. We note that the
a priori tests shown here are only a first step in judging a SFS model. A posteriori test
with LES are required to ascertain the full interactions between resolved motions and
the SFS model. Good performance of an SFS model in a priori tests does not always
translate into acceptable LES. For example, the Bardina et al. (1983) model performs
well in a priori tests but with no purely dissipative term is numerically unstable.
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6.1. Eddy-viscosity model coefficients

We compute the SFS model coefficients Ck and Cs that appear in the TKE and
Smagorinsky eddy-viscosity prescriptions described in the Appendix. Initially, a fixed
length scale l = ∆f is used in the eddy viscosity; a length scale that is shear and
stability dependent is considered in § 6.3. Average model coefficients are computed by
equating the mean observed and modelled SFS energy production〈

−τ d
ij Sij

〉
≡ 〈−τijSij 〉 = 〈2νtSijSij 〉. (6.1)

In (6.1), τij − τkkδij /3 is the deviatoric SFS flux tensor that appears in an LES
formulation (see the Appendix), νt = Ckl

√
Es for the TKE model, and νt = (Csl)

2|S|
for the Smagorinsky parameterization. We also compute model coefficients by
minimizing the difference (τ d

ij − νtSij ) using least-squares and then time averaging.
This alternative method produces values and trends similar to those found from (6.1).

The general variation of Ck and Cs with Λw/∆f , shown in figures 17(a) and 18(a), is
similar. The model coefficients tend towards an asymptote for large values of Λw/∆f

(Cs ≈ 0.11, Ck ≈ 0.05) and decrease sharply towards zero for Λw/∆f < 2. Notice
that our model coefficients at the largest available Λw/∆f fall below the theoretical
values of Cs = 0.17 (Lilly 1967) and Ck = 0.094 (Moeng & Wyngaard 1988; see also
the Appendix). The important assumptions used in deriving these model coefficients
are: sharp spectral filtering; a filter cutoff wavenumber, kf = 2π/∆f , in the inertial
range of the turbulence; and an isotropic resolved-scale strain rate tensor. In the
surface layer, these assumptions are violated to varying degrees. For the majority
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Figure 17. Smagorinsky coefficient Cs evaluated from SFS production with constant length
scale l = ∆f for varying energy-filter ratio: (a) eddy-viscosity model and (b) mixed model.
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Figure 18. TKE coefficient Ck evaluated from SFS production with constant length scale
l = ∆f for varying energy-filter ratio: (a) eddy-viscosity model and (b) mixed model.
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of atmospheric stabilities, the filter-cutoff wavenumber separating the resolved and
SFS is equal to or smaller than the wavenumber of the spectral peak in the vertical
velocity, and hence kf is smaller than the wavenumber where the inertial range begins.
Also, our use of a two-dimensional top-hat Gaussian filter lowers the estimates of Ck

(see the Appendix). Finally, since the SFS variances are not isotropic, it is expected
that the resolved strain rates are similarly anisotropic. Therefore, the SFS coefficients
obtained from the measurements and the theoretical analysis differ. Observations at
or near the top of the surface layer, under unstable buoyancy forcing, would yield
Λw/∆f 	 20, and then the SFS motions would probably conform more closely to
the assumptions of the theoretical analysis.

For Λw/∆f < 2, the Smagorinsky coefficient Cs ∝ κz/∆f , where κ is the von
Kármán constant (Pope 2000, p. 597). Porté-Agel et al. (2001) also reported that
the value of Cs decreased to values as low as 0.06 for small z/∆f ; for constant
atmospheric stability, z/∆f ∝ Λw/∆f . In LES, small values of Λw/∆f result from
stable stratification, close proximity to the surface, or large grid spacings (or a
combination of the three), see figure 4. Note that in QDNS, Cs decreases at a faster
rate near the wall because of the viscous sublayer (Germano et al. 1991).

We observe that the model coefficients in figures 17(a) and 18(a) tend to cluster
into groups by array configuration as Λw/∆f varies. This behaviour coupled with
the dependence of the model coefficients on Λw/∆f suggests that the TKE and
Smagorinsky models neglect important physical effects since the SFS fluxes (see § 5)
collapse reasonably well across the range of Λw/∆f considered. Hence, proposing a
general parameterization for Cs and Ck in the surface layer from these results is not
attractive. Our measurements are consistent with past experience that the value of
the Smagorinsky coefficient must be reduced from its theoretical value, by as much
as a factor of 2, to sustain near-wall turbulence and generate realistic simulations
of neutral boundary layers (e.g. Deardorff 1970; Moin & Kim 1982; Sullivan et al.
1994). For example, at the first grid point above the surface for a neutral boundary
layer, Λw/∆f ≈ 1 (figure 4) and the corresponding Cs ≈ 0.08 from figure 17(a).

6.2. Mixed SFS model

The modified-Leonard term is an important component of the SFS tensor (1.2) and
is responsible for a significant fraction of the SFS energy production (see §§ 5.3 and
5.4). At the same time, Lij depends only on the resolved-scale velocity which can be
accounted for directly in SFS models. However, a parameterization for the cross- and
Reynolds terms is still required since their contribution to τij is non-negligible for all
Λw/∆f (see § 5). Hence, we next consider a so-called mixed model for the SFS flux
of the form

τ d
ij = Ld

ij − 2νtSij , (6.2)

where now −2νtSij is interpreted as a parameterization for the deviatoric SFS flux
(Cij + Rij )

d .
From an implementation perspective, (6.2) is equivalent to the mixed models first

proposed by Bardina et al. (1983), but the steps leading to (6.2) differ. The Galilean-
invariant decomposition of the SFS tensor (1.3) and the need to model the cross-
and Reynolds SFS stress tensors naturally lead to (6.2). Bardina et al. (1983) and
others have shown that a similarity model alone, i.e. τij = Lij , does not generate
sufficient SFS dissipation when implemented in LES and thus an explicit diffusion
term is required. Our results in § 5 confirm that while Lij is significant τij �= Lij . In a
posteriori tests, Vreman, Guerts & Kuerten (1997) found that the mixed model with a
dynamic estimation of the eddy-viscosity coefficient yielded the most accurate LES of
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and constant length scale l = ∆f : (a) eddy viscosity model for τ d
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for the (1,3) component of the SFS flux (τ d
13) is shown as a solid line.

a turbulent mixing layer while Liu et al. (1994) found that a mixed model correlated
well with experimental data for a round jet. On the other hand, Juneja & Brasseur
(1999), using DNS data, found that a similarity model did not perform as well in
a priori tests of homogeneous turbulence when the filter cutoff encroached into the
energy containing range of the turbulence.

The objective here is to investigate the properties of a mixed model as applied to
SFS turbulence near a rough wall. By analogy with (6.1), we use

〈τijSij − LijSij 〉 = 〈−2νtSijSij 〉 (6.3)

to compute the SFS model coefficients Ck and Cs for l = ∆f . The results are
displayed in figures 17(b) and 18(b). The impact of including Lij explicitly is to
reduce the predicted values of the SFS coefficients at large values of Λw/∆f ; this is
more significant for the TKE model coefficient (figure 18b). The reduction is expected
since Lij is a significant contributor to the total SFS flux only at large values of
Λw/∆f (see figures 9–12). Disappointingly, the scatter in the model coefficients and
their systematic variation with Λw/∆f is only reduced slightly by comparison to the
results in figures 17(a) and 18(a).

While the impact of Lij on the average model coefficients is small, its influence on the
correlations between modelled and observed SFS flux is significant. Figure 19 shows
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correlation coefficients for individual components of the SFS flux τ d
ij and SFS energy

transfer τijSij using the TKE model (results are similar for the Smagorinsky model).
Correlations are shown both with the modified-Leonard term included (mixed model)
and without it (eddy-viscosity model). Here the correlation coefficient is defined as

ρ(a, b) =
〈ab〉 − 〈a〉〈b〉√

〈a2〉 − 〈a〉2
√

〈b2〉 − 〈b〉2
, (6.4)

where (a, b) are observed and modelled variables, respectively.
In the absence of Lij (see figure 19a), the correlations between measured and

modelled τ d
ij are less than 0.5 over the entire range of energy-filter ratios; negative

correlations are found at low values of Λw/∆f , further exposing the inadequacy of
an eddy-viscosity relationship. The highest correlation (ρ ≈ 0.45) between modelled
and observed SFS flux occurs for τ13; this correlation is shown as the solid line
in figure 19(a). As Λw/∆f → 0, a flux–gradient relationship exists for the (1, 3)-
component of the SFS flux and strain rate as they tend to their ensemble average
values, τ13 → 〈uw〉 and S13 → ∂〈U〉/∂z. The correlation between modelled and
measured SFS energy transfer with the eddy-viscosity model (see figure 19c) is
generally higher than for the individual flux components. This is also found with
a priori tests using DNS databases and illustrates that the primary success of an
eddy-viscosity model is to generate reasonable amounts of average energy transfer
between resolved and SFS scales in simulations (see Meneveau & Katz 2000).

With the mixed model (figure 19b), the correlations between all components of
the modelled and observed fluxes approach 0.8 or higher for large Λw/∆f . This is
consistent with our analysis of the SFS tensor which showed that the magnitude and
spectral content of Lij is comparable to Cij and Rij (see § 5). At small Λw/∆f , higher
correlations are clearly observed in figure 19(b) compared to those in figure 19(a).
Examination of the SFS energy production in figure 19(d) shows that explicit Lij in
the mixed model raises the correlation to values approaching 0.9 for all combinations
of filter widths and atmospheric stability. In addition, the correlations collapse
reasonably well in figure 19(d). The elevated correlations for SFS energy production
reflect the importance of LijSij to the SFS energy transfer; it accounts for at least
30% of the average energy transfer at Λw/∆f = 10. In addition, LijSij allows for both
forwardscatter and backscatter of energy which also contributes to higher correlations
for the SFS energy production.

6.3. Shear- and- stability-corrected length scale

The mixed model (6.2) produces significantly improved correlations between the
modelled and observed SFS fluxes and energy transfer compared to a pure eddy-
viscosity model. However, the coefficient Ck (or Cs) in the eddy-viscosity term of the
mixed model still retains a dependence on the energy-filter ratio, especially when the
modified-Leonard term is small. Note the marked decrease of Ck and Cs for small
values of Λw/∆f in figures 17(b) and 18(b). When the filter cutoff wavelength is at or
near the peak in the vertical velocity spectrum, the SFS turbulence is strongly non-
inertial and influenced by stable stratification, large-scale shear and the proximity of
the lower surface; these effects need to be included in an eddy-viscosity prescription.

Deardorff (1980), Schumann (1991), Hunt, Stretch & Britter (1988), Yoshizawa
(1998), and others propose SFS models that attempt to incorporate large-scale
shear and stable stratification. Both influences are also important ingredients in
our current SFS model (see the Appendix and Sullivan et al. 1994). The adequacy
of all these parameterizations for SFS fluxes remains relatively untested however.
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All these proposals are of a similar form and essentially introduce a variable eddy-
viscosity length scale l that depends on the large-scale shear |S| =

√
2SijSij and

the stratification through the Brunt–Väisälä frequency N 2 = (g/θo)(∂θ/∂z). Canuto
& Cheng (1997) performed a thorough theoretical study of the effects of shear and
stability on the length scale and proposed a correction that systematically includes
both effects. The critical step in their analysis is construction of an energy spectrum
in the presence of buoyancy and shear which then makes the length scale l dependent
on (|S|, N) through the SFS energy. Their model for l is attractive since it is more
general than prior studies; it also reduces to the Hunt et al. (1988) proposal in the
limit of neutral flow and approaches Deardorff’s model (see the Appendix) for large
stratification. Deardorff’s model is ill-behaved near neutral stratification.

The Canuto & Cheng (1997) length-scale model is of the form l = f (|S|, N )∆f

where their expression for the length-scale correction in equilibrium flow is

f (|S|, N)2/3 =

∫ 1

0

[1 − b ln(1 + aq2)]2 dq, (6.5)

with the definitions

b =

√
3

16
K3/2

o

(
Pr tSh2

Fi 2
− 1

)
, a =

2

π2
Fi 2f (|S|, N )2/3, q =

(
k

km

)2/3

, km =
π

∆f

.

(6.6)

In (6.6), the non-dimensional shear and inverse Froude numbers are Sh = ∆f |S|/
√

Es

and Fi = ∆f N/
√

Es , the Kolmogorov constant Ko = 1.5, and Prt is the turbulent
Prandtl number. A power series expansion of the integral in (6.5) for small Fi leads
to the following expression for neutral flow:

f (|S|)2/3 =

∫ 1

0

[1 − b′q2)]2 dq, (6.7)

with

b′ =

√
3

8π2
K3/2

o Pr tSh2f (|S|). (6.8)

The length-scale correction given by (6.5) depends on the particular combination
of shear, stratification, and filter width. To evaluate (6.5) as a length-scale parameter-
ization we compute time series of Sh and Fi using instantaneous values of ∂Ui/∂xj ,

∂θ/∂z, and Es . Fi is evaluated at all points with stable stratification and otherwise
Fi = 0. Figure 20 shows the variation of the average shear, 〈Sh〉, and stratification,
〈Fi〉, for varying atmospheric conditions in the surface layer. For z/L in the range
[−1, 2], the 〈Sh〉 varies in the range [4, 22] and 〈Fi−1〉 in the range [0.01, 8]. When
z/L < 0, 〈Sh〉 becomes nearly independent of stratification and approaches a constant
≈ 4. This behaviour can be understood by examining Sh for large Λw/∆f and z/L < 0;
we find that |S| ∼ ∆

−2/3
f , Es ∼ ∆

2/3
f and hence ∆f |S|/

√
Es tends to a constant. When

z/L < 0, Fi is small and thus the length-scale correction depends only on shear. As
the atmosphere becomes increasingly stable, Fi and Sh both increase with z/L, more
so for cases with large filter widths. As a result, the length-scale correction depends
strongly on both |S| and N for stably stratified flows.

In order to utilize (6.5) as a length-scale model we also need to specify the turbulent
Prandtl number in addition to computing Sh and Fi at each point in the time series.
For our evaluation, we adopt the Deardorff (1980) model (A 6) which makes Prt a
function of the length-scale correction f . With this model, the range of Prt is [0.3, 1]
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Figure 20. The variation of the non-dimensional shear and stratification with atmospheric sta-
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for f = [1, 0]. Integrals (6.5) and (6.7) cannot be evaluated in closed form because of
the kernel dependences on f . A Simpson’s rule quadrature and an iterative method
based on interval-halving are used to obtain numerical values of f from (6.5) when
Fi > 0.01 and (6.7) for Fi < 0.01.

Figure 21 shows the variation of the average length-scale factor 〈f (|S|, N )〉 across
the range of energy-filter ratios. At large Λw/∆f , f approaches a constant as the
influence of stratification is negligible (Fi ≈ 0) and Sh tends to its asymptotic value.
Note that with this length-scale prescription, there is always a small correction due
to shear even at very large Λw/∆f (this makes f vary smoothly as Sh changes). As
the energy-filter ratio decreases, Sh and Fi both increase which results in significant
reduction in f and hence the length scale l. The length-scale correction variation also
depends slightly on the array configuration since Sh and Fi are functions of the filter
width and the specific atmospheric conditions.

Values of the eddy-viscosity coefficients Ck and Cs from the mixed model (6.2) with
the shear-stability-dependent length scale l = f ∆f are shown in figure 22. Compared
to the results obtained with l = ∆f (see figures 17 and 18), the length-scale correction
has removed a large fraction of the Ck and Cs dependence on Λw/∆f . Inspection of
(6.2) shows that if l decreases in the eddy-viscosity term then the model coefficient
(Ck or Cs) must increase. We estimate average values of the model coefficients as
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Figure 21. The shear and stability corrected length scale factor from Canuto & Cheng
(1997) for varying Λw/∆f .

Cs ≈ 0.11 and Ck ≈ 0.045. The correlations between observed and modelled SFS
fluxes and energy production using the mixed model and a shear-stability-dependent
length scale l = f ∆f are improved slightly by comparison to the correlations obtained
with a constant length scale l = ∆f (results not shown). Further improvements to the
modelling can perhaps be obtained by using a more general stress–strain relationship,
i.e. a nonlinear eddy-viscosity model (Canuto & Cheng 1997).

6.4. Dissipation model

The SFS dissipation parameterization is a critical aspect of our TKE model (see the
Appendix). Moeng & Wyngaard (1988) show that for filter cutoff wavenumbers in
the inertial range the SFS energy and filter width must vary in a lock-step fashion
(Es ∼ ∆

2/3
f ) so that the average dissipation for a particular flow remains constant.

In view of the non-inertial SFS motions in the surface layer, it is then important to
examine the validity of this dissipation parameterization for changing filter width and
atmospheric stability.

The spatial resolution of a sonic anemometer does not allow direct measurement
of viscous dissipation and thus we need a surrogate to compare with a dissipation
parameterization. Here we assume that the measured SFS energy transfer P is equal
to the dissipation ε and evaluate the dissipation parameterization (A 4) based on the
assumption

−τijSij = Cε

E3/2
s

l
, (6.9)

where Cε is the dissipation coefficient.
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Figure 22. Smagorinsky and TKE coefficients in a mixed SFS model with shear and
stability corrected length scale l = f ∆f as function of the energy-filter ratio.

Contours of the joint probability density function of the measured SFS energy
production and the modelled dissipation are shown in figure 23 for three values
of Λw/∆f . In this comparison, l = ∆f and we use Cε = 0.66 appropriate for
Gaussian filtering (Note that Cε = 0.93 for a sharp spectral cutoff filter; see the
Appendix). Values are normalized by the average SFS energy production 〈P〉. These
cases are selected since they illustrate the changing behaviour of the dissipation
parameterization as the energy-filter ratio varies. For Λw/∆f = 0.23 (figure 23a)
and Λw/∆f = 0.58 (figure 23b) the standard dissipation parameterization is too
small on average compared to the observed P, whereas at large energy-filter ratios
(Λw/∆f = 11.4; figure 23c), the SFS production and parameterized dissipation are in
approximate balance on average. Also, notice that the probability density contours
spill over into negative regions of SFS energy production. This backscatter of energy
from the SFS motions to the resolved scales, as shown earlier, is most significant
for large Λw/∆f . The positive-definite dissipation parameterization (A 4) is unable
to capture this effect. Also apparent from these contours is the increased fluctuation
level in SFS energy production and hence dissipation with increasing Λw/∆f – the
contours for Λw/∆f = 11.4 clearly extend to larger ε values than for Λw/∆f = 0.23
(figure 23a).

By trial and error, Deardorff (1973) determined that Cε = 0.7 yielded realistic
simulations. This choice is consistent with our analysis in the Appendix that shows that
the dissipation coefficient is lower for Gaussian filtering; such filtering is a reasonable
approximation for a finite-difference code. The results in figure 23, however, indicate
a more general dependence on the energy-filter ratio. To quantify this dependence, we
compute the dissipation coefficient by averaging (6.9) using the length scales l = ∆f
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Figure 23. Contours of the joint probability distribution of the model dissipation ε = CεE
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and the measured SFS energy production −τij Sij . ε and −τij Sij are normalized by the
average production 〈−τij Sij 〉 and (Cε, l) = (0.66,∆f ). The shading darkens with decreasing
contour values (0.008, 0.05, 0.1, 0.35). (a) (z/L, Λw/∆f ) = (0.82, 0.23); (b) (0.05, 0.58); and
(c) (−0.40, 11.4). The sloping line corresponds to ε = −τij Sij . Energy backscatter occurs at all
points where −τij Sij < 0.

and l = f ∆f for each measurement period. The results are displayed in figure 24. For
constant l = ∆f (see figure 24a), Cε ≈ 0.66 for Λw/∆f ≈ 3 or greater, but Cε exhibits
a sharp increase for very small values of Λw/∆f . At large energy-filter ratios, the
filter-cutoff wavenumber is encroaching into the inertial range where ε is a constant.
Our measurements suggest an asymptote of Cε = 0.5–0.6 which supports Deardorff’s
dissipation coefficient of 0.7.

The impact of including a variable length scale (see figure 24b) is to lower Cε and
to eliminate much of the variation with Λw/∆f . This is expected since the variable
length scale also produced reasonably constant values of the TKE and Smagorinsky
coefficients. However, a persistent trend for Cε to increase with decreasing Λw/∆f still
exists. Further analysis and modelling are required to understand and parameterize
this trend.
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Figure 24. Dissipation coefficient Cε evaluated by matching the average model dissipation
and SFS production: (a) constant length scale l = ∆f and (b) variable length scale l = f ∆f .

7. Conclusions
The structure of the subfilter-scale (SFS) turbulent motions in the atmospheric

surface layer is sensitive to the relative positions of the spectral peak of the vertical
velocity Λw and the filter cutoff scale ∆f . Λw decreases with increasing stability and
decreasing vertical distance from the surface, and this dependence constrains our
ability to perform large-eddy simulation (LES). As the grid resolution is refined, both
the LES filter cutoff ∆f,les and Λw at the first grid level (δz) shift proportionally to
smaller scales, i.e. ∆f,les cannot be moved independently of Λw (at z = δz). As a
result, the SFS fluxes in LES are always significant at the first grid level and their
contribution to the total flux grows with increasing stability. For LES with 2003

gridpoints, Λw/∆f,les is approximately in the range [0.1, 20] in the surface layer.
Measurements of SFS fluxes and variances from the Horizontal Array Turbulence

Study (HATS) field program collapse reasonably well when plotted as a function of
the energy-filter ratio Λw/∆f . This holds true for Λw/∆f over the broad range [0.2, 15]
and includes a wide variety of stratifications and filter widths. In the surface layer, the
SFS variances are anisotropic and the SFS energy is non-inertial, and they exhibit a
strong dependence on the stratification, large-scale shear, and proximity to the surface
– more so for small Λw/∆f . At Λw/∆f ≈ 1, the SFS fluxes (τ11, τ22, τ33, τ13) contribute
at least (40, 40, 90, 75)% to the respective total fluxes. The fractional contribution is
even greater for slight increases in stability.

Decomposition of the SFS flux into modified-Leonard, cross-, and Reynolds terms
shows that these terms are of comparable magnitude and scale content at large
Λw/∆f . The modified-Leonard term is equivalent to the Bardina et al. (1983) scale-
similarity term. As Λw/∆f decreases, the SFS flux approaches the ensemble average
and is dominated by the Reynolds term. Computations of SFS energy production
show that the backscatter of energy from the SFS motions to the resolved fields is
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less than 20% for Λw/∆f < 2. Energy backscatter in LES is most important for
well-resolved turbulence exhibiting an inertial range, e.g. at the top of the surface
layer. Hence, in the surface layer, the inclusion of energy backscatter in an SFS model
is not crucial for small Λw/∆f values. The SFS energy production from the modified-
Leonard term amounts to at least 30% of the total, contains both forwardscatter and
backscatter of energy, and can be computed directly with resolved-scale information.

A priori testing of SFS models with the HATS dataset shows that the turbulent
kinetic energy and Smagorinsky model coefficients Ck and Cs , derived from the
measurements, depend on Λw/∆f and are smaller than the theoretical estimates
based on the assumption of a sharp spectral cutoff in the inertial range. With
stable stratification or small height z (small Λw/∆f ), the measured Ck and Cs tend
to zero. For a pure eddy-viscosity model, the correlations between measured and
observed SFS fluxes and energy transfer are relatively low, but mixed SFS models
that explicitly include the modified-Leonard term exhibit much higher correlations.
However, even with the mixed model, the eddy-viscosity model coefficients retain a
significant dependence on Λw/∆f . Much of this dependence is removed by including
a shear-stability length-scale parameterization (Canuto & Cheng 1997) in the eddy-
viscosity model. Furthermore, this parameterization improves the behaviour of the
coefficient Cε in a dissipation model, ε = CεE

3/2
s / l, used in SFS modelling, i.e. the Cε

based on the variable length scale l exhibits substantially less variation with Λw/∆f

than the Cε for a constant l(=∆f ). Finally, we note that the definition of filter width
∆f used in the data analysis cannot be equated exactly with the filter width ∆f,les

used in LES boundary layer codes. The latter is imprecisely known, varying with the
numerical method and proximity to the boundary.

In summary, for neutral and stable surface-layer flows, the difficulty of performing
LES with a standard Smagorinsky model can be explained by: (i) the increasing
dominance of the SFS motions with increasing stability, (ii) the departure of the SFS
motions from the classical view of inertial-range turbulence, and (iii) the inability to
vary the filter cutoff independently of the peak in the energy spectrum.
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Appendix. TKE and Smagorinsky SFS models
In LES, the normal SFS stress τkk is absorbed in the effective pressure and a

parameterization of the deviatoric SFS flux,

τ d
ij = τij − 1

3
τkkδij , (A 1)

is required for closure of the resolved-scale equations. With an eddy-viscosity
prescription, the SFS fluxes are aligned with the resolved (filtered) strain rates and



Subfilter-scale fluxes in the atmospheric surface layer 135

are diagnosed with

τ d
ij = −2νtSij , (A 2)

where the eddy viscosity νt needs to be modelled. Our particular SFS parameterization
(Moeng 1984; Sullivan et al. 1994) utilizes

νt = CklE
1/2
s , (A 3)

where Ck is a modelling coefficient, l is a length scale, and the SFS energy Es = τkk/2
evolves according to a prognostic TKE equation that includes large-scale advection,
SFS production, buoyancy, diffusion, and dissipation, first proposed by Deardorff
(1980). Viscous dissipation is parameterized by the Kolmogorov model

ε = Cε

E3/2
s

l
, (A 4)

where Cε is another modelling coefficient. SFS buoyancy fluxes, which appear in the
equations for resolved potential temperature θ and SFS TKE, are modelled with the
gradient assumption

τθi =
νt

Pr t

∂θ

∂xi

, (A 5)

where the turbulent Prandtl number

Pr t =
∆f

∆f + 2l
. (A 6)

In regions of unstable stratification (∂θ/∂z < 0) the length scale is set equal to the
LES filter width:

l = ∆f , (A 7)

while for stable stratification (∂θ/∂z > 0)

l = ClE
1/2
s

(
g

θo

∂θ

∂z

)−1/2

, (A 8)

with Cl = 0.76. Deardorff (1980) originally suggested the use of a stability-corrected
length scale (A 8) to improve entrainment rate predictions of stratocumulus clouds
but its appropriateness for PBL turbulence is unknown. While the above TKE model
is the default implementation in our LES code, its structure and the numerical value
of the coefficients have been adjusted to suit particular PBL flows (e.g. Moeng &
Wyngaard 1988; Sullivan et al. 1994; Patton et al. 1998; Saiki et al. 2000).

The Smagorinsky model (and its variants) is the most widely used SFS model in
neutral engineering flows (e.g. Meneveau & Katz 2000) and is often used in LES
of the PBL with buoyancy corrections (e.g. Mason & Brown 1999). Hence, we also
consider the classic Smagorinsky (1963) model in our evaluation:

νt = (Csl)
2|S|, (A 9)

where the magnitude of the strain rate tensor |S| =
√

2SijSij . A relationship between
the Smagorinsky and TKE model coefficients can be obtained by considering a
truncated form of the SFS TKE equation. If a balance between SFS production
and dissipation is assumed (i.e. equilibrium flow with small advection, diffusion, and
buoyancy)

−τijSij = ε, (A 10)
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and (A 2), (A 3), and (A 4) are substituted into (A 10) then the relationship between
model coefficients becomes

C2
s = Ck

(
Ck

Cε

)1/2

. (A 11)

In a pioneering study, Lilly (1967) obtained estimates of the SFS model coefficients
Cε, Ck , and Cs under idealized conditions for a sharp spectral cutoff filter. In practice,
however, non-sharp filters are frequently used and thus it is worthwhile to estimate
the SFS model coefficients for other filter shapes. Our analysis follows Lilly (1967)
and we adopt a Kolmogorov spectral form so that the LES filter scale always lies in
the inertial range of the turbulence. For a general filter function G(k), the SFS energy
Es is obtained from the energy spectrum function E(k) by integrating over all scalar
wavenumbers k:

Es =

∫ ∞

0

[1 − G2(k)]E(k) dk. (A 12)

Given the spectrum E = Koε
2/3k−5/3 with the dissipation ε modelled by (A 4) and a

constant length scale l = ∆f , (A 12) reduces to

Cε = (KoIo)
−3/2 , (A 13)

where Io is computed from

Io =

∫ ∞

0

[1 − G2(β)]β−5/3 dβ. (A 14)

The dimensionless wavenumber β = ∆f k.
An expression for the eddy-viscosity coefficient Ck is similarly obtained by assuming

a balance between the average SFS production and dissipation, 〈−τijSij 〉 = 〈ε〉 and
using an isotropic form for the energy spectrum (Lilly 1967; Moeng & Wyngaard 1988;
Pope 2000, p. 579). The general relationship for the TKE eddy-viscosity coefficient is

Ck =
Cε

1/3

KoI1

, (A 15)

where

I1 =

∫ ∞

0

β1/3G2(β) dβ. (A 16)

Cε, Ck , and Cs are computed from (A 13), (A 15), and (A 11), respectively, with Io and
I1 containing the filter dependence.

We consider two filters that are used in practice; a sharp cutoff filter defined as:

G(β) =

{
1, 0 < β < π

0, π � β < ∞;
(A 17)

and a Gaussian filter

G(β) = exp(−β2/24). (A 18)

The integrals Io and I1 can be evaluated in closed form for the sharp spectral cutoff
filter (Lilly 1967; Moeng & Wyngaard 1988). In the case of Gaussian filtering, a
closed-form expression for I1 exists, while a numerical quadrature is used to evaluate
Io. The values of the SFS model coefficients and the integrals (Io, I1) for these two
filters are given in table 2. The important aspect to notice is that the dissipation and
eddy-viscosity coefficients (Cε, Ck) are filter dependent: they are lower for Gaussian
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Filter Cε Ck Cs Io I1

Sharp cutoff 0.93 0.094 0.173 3π−2/3/2 3π4/3/2
Gaussian 0.66 0.081 0.168 0.874 7.10

Table 2. SFS model coefficients for different filters with Ko = 1.5.

filtering than for the sharp spectral cutoff filter. However, the Smagorinsky coefficient
Cs remains relatively unchanged because of compensating changes in Ck and Cε .
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